Doprava na zemní plyn - stanice na zkapalněný zemní plyn (LNG) pro autobusy
LNG stanice, ilustrační foto Chart Ferox

První LNG čerpací stanice v Evropě pro flotilu 30ti autobusů se buduje v Polsku. Informace o LNG (Liquefied Natural Gas).
První LNG čerpací stanice v Evropě pro flotilu 30ti autobusů se buduje v Polsku. Informace o LNG (Liquefied Natural Gas).
Jak BUSportál informoval Tomáš Čermák ze společnosti Chart Ferox, a.s. , tato společnost dodává výrobci autobusů palivový systém (nádrže, odpařovače). Motory Cummins 8.9 l vybaví autobusy SOLCITY 12 SM12 LNG polský výrobce Solbus. (Společnost Solbus byla v České republice známá především jako licenční výrobce autobusů SOR v Polsku. V současné době už tato spolupráce neexistuje a SOR se prosazuje v Polsku autobusy vyrobenými ve svém libchavském závodě).

Plánované spuštění provozu stanice je na jaře 2010.

Další informace o samotném palivu LNG jsme se svolením autorů i redakce převzali z loňského speciálního "plynového" čísla časopisu Městská doprava. Tématu se budeme věnovat i v budoucnu.
ZKAPALNĚNÝ ZEMNÍ PLYN V AUTOMOBILOVÉ DOPRAVĚ
Václav Chrz, Tomáš Čermák, Chart Ferox, a.s., Děčín Trendy zvyšování celosvětové spotřeby energie zejména v automobilové dopravě a snaha o zlepšování kvality ovzduší, jsou důvodem hledání alternativních motorových paliv, která by mohla nahradit paliva na bázi ropy (benzin a motorová nafta) a současně přispět ke snížení emisní zátěže, především pak ke snížení emisí skleníkových plynů. Dosud nejvíce využívanými alternativními palivy v automobilové dopravě jsou plynná paliva, propan-butan (LPG) a stlačený zemní plyn (CNG). Zhruba v roce 2001 došlo v řadě zemí celého světa k zásadnímu zvratu v rozvoji využití CNG, od kdy počty CNG vozidel v řadě zemí narostly do statisíců. V období let 2010–2020 se předpokládá významné využití zemního plynu jako alternativní pohonné hmoty v dopravě (v r. 2020 by měl jeho podíl činit až 10% z celkové spotřeby motorových paliv). To znamená, že celkový počet automobilů, které by měly jezdit na zemní plyn v EU by činil 43 milionů. Význam zemního plynu v dopravě je ve světě i v Evropě již dnes obrovský a má vzestupný charakter.

Souběžně s tím se rozvíjí technologie využití LNG, která přináší dodatečné výhody v aplikacích pro plnění vozidel. Její rozvoj je většinou limitován možnostmi dodávek LNG, kde doposud převládá poptávka nad nabídkou, ale v publikacích je již signalizován obrat k převaze zdrojů pro nejbližší desetiletí. LNG je možno dopravovat po silnici na velké vzdálenosti. Například v současné době se vozí z Ruska do Německa.

Poprvé jsme referovali o možnostech využití zkapalněného zemního plynu v dopravě v časopise Městská Doprava v roce 2000 [1]. V té době se již jednalo o několika záměrech konkrétních realizací. Restrukturalizace plynárenského průmyslu však odložila prioritu řešení zdrojů zkapalněného zemního plynu a dotační politika nestimulovala dostatečně zájem dopravních firem o úsporu nákladů na paliva. V poslední době je však využití zemního plynu podporováno státem. V okolních zemích (Polsko, Rusko) jsou v provozu a dále se budují zkapalňovače zemního plynu a připravuje se výstavba přijímacích námořních terminálů (Polsko, Německo, Nizozemsko, Litva, Švédsko), jaké jsou již v běžném provozu ve vzdálenějších zemích (Španělsko, Francie, Belgie, Spojené království, Itálie a další). Zdroje v Polsku a Rusku jsou k okamžité dispozici pro Střední Evropu včetně České republiky za příznivé ceny. Převoz LNG po silnici nebo železnici, tak jako je tomu u LPG nebo benzinu a nafty, není ani technologickým, ani ekonomickým problémem. Mezitím získané reference ve světě a prudký nárůst cen ropy v poslední době vedou k oživení zájmu o využití LNG v dopravě. Nejvýznamnějšího rozvoje dosáhl provoz LNG vozidel v USA, Koreji, Austrálii a Číně. V Evropě jsou LNG vozidla provozována ve Španělsku, Spojeném království a poloprovozně v Rusku a Švédsku. V řadě států se činí kroky k širokému nasazení LNG vozidel. Vše, co je v tomto článku řečeno o technice využití LNG v dopravě, platí analogicky i pro LBG, zkapalněný bioplyn, který se těší zcela prioritní politické podpoře v rámci boje proti skleníkovému efektu. Využití bioplynu totiž nejen snižuje emise CO2 oproti naftě, ale jeho jímání snižuje emise metanu, který má dvacetinásobný skleníkový efekt. U bioplynu je zkapalnění praktické pro převoz od zdrojů ke spotřebě.

Přednosti LNG technologie

Při srovnání CNG technologie s LNG je předností zkapalněného zemního plynu jeho velká kompaktnost. Zemní plyn zkapalní za tlaku 1 bar při teplotě –161°C. Jeden normální m3 zemního plynu zabírá po zkapalnění objem 1,7 litru (3 krát méně než po stlačení na 200 bar při 15°C, což je normalizovaná hustota při plnění vozidel stlačeným zemním plynem). To umožňuje jednak ekonomickou přepravu paliva k plnicí stanici, jednak umístění poměrně velkého množství plynu v kapalném stavu v nádrži vozidla. Návěsová cisterna pojme kolem 18 tun zkapalněného zemního plynu, ISO kontejner kolem 15 tun. Zkapalněný zemní plyn je možno uchovávat v izolovaných nádobách při poměrně nízkých tlacích. Obvykle se volí maximální konstrukční tlaky 4 až 7 bar pro přepravní cisterny, 12,5 bar pro skladování a 16 bar pro vozidlové nádrže. Skutečné provozní tlaky jsou však podstatně nižší. Kompaktnost paliva umožňuje nízkou hmotnost a malý objem nádrží s příznivým dopadem na užitkové vlastnosti vozidla a na zvětšení dojezdu vozidla.

Další významnou předností LNG technologie je nezávislost čerpacích stanic na rozvodu potrubního plynu. Tyto stanice mohou stát kdekoliv, ať už ve zcela neplynofikované oblasti (severní Skandinávie), nebo tam, kde je plyn běžně rozváděn potrubím, ale potrubí není dostupné v místě optimálním pro tankování vozidel - jako jsou křižovatky hlavních dopravních tahů, v rovnoměrných vzdálenostech na dálnicích a podobně. Pokud řidič kvůli dotankování vozidla musí sjíždět z dálnice i několik kilometrů k CNG čerpací stanici u plynovodu, podstatně se zvyšují celkové dopravní náklady a úspora dosažitelná použitím plynu oproti naftě tím může být zcela eliminována [3]. Čerpací stanice LNG se vyznačují jednoduchou konstrukcí, tichým chodem, nízkými investičními náklady, nízkou energetickou náročností na samotné stanici a nízkými náklady na její údržbu oproti srovnatelným CNG stanicím.

Další výhodou LNG technologie je vysoká čistota paliva, to je nízký obsah dusíku i těžkých uhlovodíků, žádný olej ani částice.

Princip technologie plnicích stanic LNG (obr. 1)

Doprava LNG na plničku silničními cisternami je analogická s klasickými palivy. LNG je na stanicích skladován ve dvouplášťových perlito-vakuově izolovaných zásobnících, které mají u běžných velikostí plnicích stanic objem v desítkách m3. V průběhu skladování nedochází k žádným ztrátám plynu, neboť odpar kapaliny je více než kompenzován zvětšujícím se objemem pro páru a při plnění zásobníku kondenzují páry v doplňované kapalině.

Funkce čerpacích stanic je obdobná jako u běžných kapalných paliv. LNG je u čerpací stanice uskladněn v izolovaném zásobníku a pomocí ponorného čerpadla, umístěného v samostatné izolované nádrži, se čerpá přes výdejní stojan do dvouplášťové superizolované vozidlové nádrže. Čerpadla LNG mají oproti kompresorům nepatrné náklady na údržbu a značně menší četnost a trvání odstávek. Výdejní stojan LNG může plnit nádrž vozidla průtokem 190 l/minutu (to odpovídá 122 Sm3 plynu/min), tedy asi 3krát rychleji než průměrný rychloplnicí stojan CNG. Potřebná energie pro pohon takového LNG čerpadla je 12 kW. (Příkon dvou kompresorů CNG, které by měly odpovídající výkon, činí cca 150 kW.) Příklad plnicí stanice LNG je na obr. 3.

Zařízení na palubě LNG vozidel

Palivo je ve vozidle uskladněno v superizolovaných nádržích, konstruovaných pro nízkou teplotu LNG. Tato nádrž představuje asi 80% nákladů na celou palubní výstroj. Na obr. 4 jsou dvě nádrže LNG, umístěné pod podlahou autobusu. Jiné umístění, běžné v USA, je na zádi nad motorem nebo na střeše autobusu. U tahačů jsou nádrže umístěny na boku chassis tak, jako běžné naftové nádrže.

V systémech firmy Chart se LNG plní při tlaku varu stejném, jako je požadovaný provozní tlak v nádrži a tím je zajištěna jeho provozní stabilita. Podle typu motoru je v nádrži typicky požadován tlak 3 až 8 bar. Kapalina je odtahována z nádrže do odpařovače, ve kterém se chladicí kapalinou motoru odpařuje a ohřívá na teplotu okolí, takže dále k motoru postupuje stlačený plyn. Jednostupňovým regulátorem se pak jeho tlak upravuje dle potřeby vstřikovacího systému motoru. Pokud v případě periodického provozu s častějšími odstávkami roste tlak par v nádrži, je ihned po nastartování motoru snížen přednostním odběrem páry z nádrže. Protože LNG není odorizován, vybavují se vozidla palubními detektory plynu.

Princip LCNG technologie (obr. 2)

Princip těchto plnících stanic je takový, že kapalný zemní plyn je stlačen pístovým čerpadlem v jednom stupni na požadovaný tlak (300 bar). Výkon čerpadla 15 litrů za minutu (530 Sm3 plynu za hodinu) odpovídá dvěma relativně velkým kompresorům CNG při 13 krát menší spotřebě energie. Stlačená kapalina se zplyní v odpařovači teplem atmosférického vzduchu. Dále je plyn veden přes dávkovač odorantu (odorizér) buď do zásobníku CNG nebo přímo do automobilové nádrže CNG. Základní výhodou LCNG stanice je její zásobování zkapalněným zemním plynem, který může být beze ztrát přečerpán do jejího zásobníku kdekoliv, kam může zajet plnicí cisterna nebo nádržový ISO kontejner. Polohu stanice je možno volit pouze na základě logistických hledisek. LCNG stanice mohou tedy působit jako významný prvek doplnění sítě čerpacích stanic tak, aby se dosáhlo rovnoměrných vzdáleností plnicích stanic, které jsou doporučovány dle hustoty osídlení 5 až 20 km, a tím vytvořit dobré podmínky pro rozvoj CNG vozidel v důsledku komfortu plnicích možností zákazníků. Synergie CNG a LCNG plnicích stanic tak může výrazně přispět k dalšímu rozvoji obou systémů při zvýšení počtu CNG vozidel. Pro stejný plnicí výkon jsou náklady na výstavbu plnicí stanice LCNG o 20 až 40% nižší než u CNG (závisí na velikosti stanice). V tom nejsou započteny náklady na výstavbu eventuální potrubní přípojky pro CNG stanici. Byla provedena technicko-ekonomická studie [5] na základě cen nafty a ceny LNG při dovozu z Polska roku 2007 s výsledkem, že u stanic odpovídajícího výkonu se u varianty LCNG ušetří 1,04 Kč celkových nákladů na 1Sm3 naplněného plynu. To u stanice odpovídající svým výkonem spotřebě 36 autobusů při produkci 4800 Sm3/den činí úsporu cca 1,8 mil. Kč za rok oproti CNG systému. Příklad instalace LCNG stanice v Norsku je na obr. 5.

Návrhy dopravních systémů LNG a LCNG

Pro návrh dopravního systému na bázi LNG je třeba nejdříve hledat zdroj LNG. V současné době existuje pro Českou republiku možnost dovozu z Polska, kde v nejbližší době budou uvedeny do provozu tři nové zkapalňovače, nebo z Ruska, kde je již několik zkapalňovačů v provozu. Veškerou techniku pro dopravu, skladování a plnění LNG do vozidel jakož i vozidlové palubní systémy může dodat firma Chart [6]. Vzorová ekonomická studie [4] LNG systému byla zpracována v roce 2000. Podle tehdejších cenových relací vycházela doba návratnosti investic kolem 5 let. Při současném nárůstu rozdílu mezi cenou nafty a plynu by byla výrazně nižší.

Nejvýhodnější ekonomický a ekologický efekt vykazuje využití LNG pro systémy městských služeb (svoz odpadků a čištění ulic), protože tato vozidla mají extrémně vysokou spotřebu paliva. Následují autobusy městské dopravy, vyznačující se, vzhledem ke způsobu provozu, rovněž vysokou spotřebou paliva. Oba tyto druhy vozidel se pohybují v nejhustěji osídlených místech intravilánu měst, kde výrazné snížení emisí, typické pro dopravu na zemní plyn, nejvíce přispívá ke zlepšení životního prostředí. To vytváří příznivé klima pro politickou i finanční podporu takových projektů včetně čerpání prostředků od EU. V tabulce 1 je uvedena technická rozvaha parametrů autobusového dopravního systému. Chart Ferox, a.s., může poskytnout podklady pro ekonomické studie takových systémů.

S poměrně nízkými náklady lze plnicí stanici na bázi LNG upravit pro plnění jak CNG tak i LNG vozidel z téhož LNG zásobníku. Je tak možno kombinovat podnikovou plnicí stanici s veřejnou. Zhruba polovina stanic, dodaných společností Chart, je vybavena oběma možnostmi.

Příkladem jsou dvě největší stanice v USA, postavené v různých lokalitách v Los Angeles (obr. 6. )
Závěr
Technika využití LNG v dopravě je dlouhodobě ověřená co do spolehlivosti a efektivnosti nejen v dopravě, ale i u odpařovacích stanic LNG pro energetické účely.
LNG je nyní dostupný i pro využití v České republice. Technologie LNG na palubě vozidel představuje perspektivní variantu dopravních systémů těžkých vozidel včetně autobusů. Alternativou pro lehká vozidla a pro rozšíření plnicích příležitostí současných i budoucích flotil CNG vozidel jsou LCNG stanice.
Literatura
  1. Chrz V., Zeman J., Využití zkapalněného zemního plynu (LNG) v městské dopravě, Městská Doprava, září 2000.
  2. Chrz V., Emmer C., Proceedings of the International Congres on Refrigeration, Washington, IIR, 2003
  3. Chrz V., Materiály mezinárodní konference o využití zemního plynu v dopravě, Praha, Český plynárenský svaz, leden 2008,
  4. Chrz V., Zeman J., Barr D., Lonsain H.: LNG vehicle systems became economical eventually, Sborník konference Cryogenics 2000, Icaris, Praha, 2000
  5. . Čermák T., Projektová studie LCNG plnicí stanice, Diplomová práce, ČVUT Praha, 2007
  6. Webové stránky firmy Chart: www.chart-ferox.com, www.nexgenfueling.com

Doprava na zemní plyn - stanice na zkapalněný zemní plyn (LNG) pro autobusy
Obr.3. Plnicí stanice LNG pro 200 autobusů ve Phoenixu v USA
Doprava na zemní plyn - stanice na zkapalněný zemní plyn (LNG) pro autobusy
Obr.2. Schema LCNG plnicí stanice
Doprava na zemní plyn - stanice na zkapalněný zemní plyn (LNG) pro autobusy
Doprava na zemní plyn - stanice na zkapalněný zemní plyn (LNG) pro autobusy
Obr. 1. Schema plnicí stanice LNG
Doprava na zemní plyn - stanice na zkapalněný zemní plyn (LNG) pro autobusy
Obr.4. Dvě nádrže LNG v zavazadlovém prostoru autobusu
Doprava na zemní plyn - stanice na zkapalněný zemní plyn (LNG) pro autobusy
Obr. 5. LCNG plnicí stanice pro třicet CNG autobusů v Bergenu
Doprava na zemní plyn - stanice na zkapalněný zemní plyn (LNG) pro autobusy
Obr. 6. Plnicí stanice se šesti stojany LNG a třemi stojany LCNG pro městské služby v Los Angeles